142
Bioelectromagnetism
Parker GH and van Heusen AP (1917): Te response of the catfsh, Amiurus Nebulosus, to metallic and
non-metallic rods. Amer J Physiol 44:405–420.
Persinger MA and Saroka KS (2015): Human quantitative electroencephalographic and Schumann reso
nance exhibit real-time coherence of spectral power densities: implications for interactive infor
mation processing. J Sig Inform Proces 6:153–164.
Perumpral JV, Earp UF and Stanley JM (1978): Efect of electrostatic feld on locational preference of
house fies and fight activities of cabbage loopers. Environ Entomol 7:482–486.
Petri AK, Shmeidchen K, Stunder D, et al. (2017): Biological bioefects of exposure to static electric felds
in humans and vertebrates: a systematic review. Environ Health 16:41.
Phillips JB and Borland SC (1992): Behavioural evidence for use of a light-dependent magnetoreception
mechanism by a vertebrates. Nature 359:142–144.
Price C (2016): ELF electromagnetic waves from lightning: the Schumann resonance. Atmosphere 7:116.
Price C, Williams E, Elhalel G and Sentman D (2021): Natural ELF felds in the atmosphere and in living
organisms. Inter J Biometeorol 65:85–92.
Reiter R (1992): Phenomena in Atmospheric and Environmental Electricity. Elsevier Science Publishers,
Amsterdam, London, New York, Tokyo.
Ritz T, Adem S and Schulten K (2000): A model for vison-based magnetoreception in birds. Biophys J
78:707–718.
Roberts AM (1969): Efect of electric felds on mice. Nature 223:639.
Romanenko S, Begley R, Harvey AR, Hool L and Wallace VP (2017): Te interaction between electro
magnetic felds at megahertz, gigahertz and terahertz frequencies with cells, tissues and organ
isms: risks and potential. J R Soc Interf 14:20170585.
Rycrof MJ, Nicoll KA, Aplin KL, et al. (2012): Recent advances in global electric circuit coupling between
the space environment and the troposphere. J Atmosp Solar-Terrestrial Phys 90–91:198–211.
Saroka KS, Vares DE and Persinger MA (2016): Similar spectral power densities within the Schumann
resonance and a large population of quantitative electroencephalographic profles: supportive evi
dence for Köning and Pobachenko. PLoS One 11 (1):e0146595. Doi: 10.1371/journal.pone.0146595.
Schmiedchen K, Petri AK, Driessen S and Bailey WH (2018): Systematic review of biological efects of
exposure to static electric felds. Part II: Invertebrates and plants. Environ Res 160:60–76.
Schuà L (1954): Die Wirkung von lufelektrischen Feldern auf Tiere. Verh Dtsch Zool Ges 18:435–440.
Schumann WO (1952): Über die strahlungslosern Eigenschwingungen einer leitenden Kugel, die von
einer Lufschicht und einer Ionensphärenhülle umgeben ist. Z Naturforsch 7(A):149–154.
Schumann WO and König HL (1954): Über die Beobachtung von “atmospherics” bei geringsten
Frequenzen. Naturwissenschafen 41:183–184.
Semm P, Schneider T and Vollrath L (1980): Efects of an earth-strength magnetic feld on electric activ
ity of pineal cells. Nature 288:607–608.
Shigemitsu T, Tsuchida Y, Nishiyama F et al. (1981): Temporal variation of the static electric feld inside
an animal cage. Bioelectromagnetics 2:1259–1300.
Sulman FG (1980): Te Efect of Air Ionization, Electric Fields, Atmospherics and Other Electric
Phenomena on Man and Animal. Charles C Tomas Publisher, Springfeld, IL.
Sutton GP, Clarke D, Morley EL and Robert D (2016): Mechanosensory hairs in bumblebees (Bombus
terrestris) detect weak electric felds. PNAS 113:7261–7265.
Tesla N (1905): Te transmission of electrical energy without wires as a means of furthering world peace.
Electr World Eng 7:21–24.
Tesla N (2015): Tesla Patent 787,412 Art of Transmitting Electrical Energy through the Natural Medium. In
Nikola Tesla Lectures & Patient, 655–660. Discovery Publisher, New York.
Timmel CR and Henbest KB (2004): A study of spin chemistry in weak magnetic felds. Phil Trans R.
Soc. Lond. A 362:2573–2589.
Toomey J and Polk C (1970): Research on Extremely Low Frequency Propagation with Particular Emphasis
on Schumann Resonance and Related Phenomena. Contract Nr AF 19 (628)-4950. University of
Rhode Island, Kingston, RI.